The Puppet State of DevOps Report 2021 – A Summary

I get a bit confused every year about who is writing the State of DevOps Report, and how that gets decided, and in the past it’s been Puppet, Google, DORA and others, but this year, 2021, it was definitely Puppet.

[Edit: apparently there are two State of DevOps reports now… I’m staying out of that particular argument though!]

The state of DevOps report each year attempts to synthesise and aggregate the current state of the technology industry across the world in respect to our collective transformation towards delivering value faster and more reliably. Or as Jonathan Smart puts it, “Sooner. Safer, Happier”. The DevOps shift has been in progress for over a decade now, and whilst DevOps was always really about culture, the most recent reports are now emphasising the importance of culture, progressive leadership, inclusion, and diversity more than ever before.

Last year, in 2020, the core findings of the State of DevOps Report focussed on:

  1. The technology industry in general still had a long way to go and there remained significant areas for improvement across all sectors.
  2. Internal platforms and platform teams are a key enabler of performance, and more organisations were starting to adopt this approach.
  3. Adopting a long-term product approach over short-term project-oriented improves performance and facilitates improved adoption of DevOps cultures and practices.
  4. Lean, automated, and people-oriented change management processes improve velocity and performance over traditional gated approaches.

This year (2021), there are a number of key findings building on previous DevOps reports:

1. Well defined and architected Team Topologies improve flow.

Clear organisational dynamics including well-defined boundaries, responsibilities, and interactions, are critical to achieve fast flow of of value. Whilst last year highlighted the importance of internal platforms, this report emphasises the importance of Conway’s Law, and shows that well defined team structures and interactions, such as platform teams (which scale out the benefits of DevOps transformations across multiple teams), cross-functional value-stream aligned teams, and enabling teams strongly influence the architecture and performance of the technology they build. Team “Interaction Modes” as seen in the diagram below are also critical to define, in the same way that we would define API specifications.

DevOps and Team Topologies

The book Team Topologies expands upon this concept in great detail, and Matthew and Manuel, the authors, also provide excellent training in order to apply these concepts to your contexts.

Clear team responsibilities

What is also clear from the State of DevOps Report this, and has been for some time, is that siloing DevOps practices into separate “DevOps teams” is an antipattern to success in most cases. And there should still be no such thing as a “DevOps Engineer”.

2. Use of cloud technology remains immature in many organisations.

Whilst the majority of organisations are now using cloud technology such as IaaS (infrastructure-as-a-service), most organisations are still using it in ways that are analogous to the ways we used to manage on-premise or datacentre technology. High performers are adopting “cloud-native” technologies and ways of working, including the NIST (National Institute of Standards and Technology)essential characteristics of cloud computing: “on-demand self-service, broad network access, resource pooling, rapid elasticity or expansion, and measured service.” How these are implemented is very context-specific, but includes the principles of platform(s) as a product or service, and high competencies in monitoring and alerting and SRE (Site Reliability Engineering) capabilities, whether as SRE teams, or SRE roles in cross-functional teams.

Cloud native capabilities and devops

3. Security is shifting left.

High performers in the technology space integrate security requirements early in the value chain, including security stakeholders into the design phase and build phases rather than just at deploy, or even worse, run, phases. Traditional “inspection” approaches to security, governance and compliance significantly impact flow and quality, resulting in higher risk and lower reliability. Applying DevOps principles and practices to include change management, security and compliance improves flow, reliability, performance, and keeps the auditors off your back.

DevSecOps transformation

Whilst some call this DevSecOps, many would simply call it DevOps the way it was always intended to be.

4. DevOps and Digital Transformation must be delivered from the bottom-up, and empowered from the top-down.

Culture is the reflection of what we do, the behaviours we manifest, the practices we perform, the way we interact and what we believe. Culture change is never successfully implemented only from the top-down, and must be driven and engaged with by those expected to actually change their behaviours and practices.

DevOps transformation promotion

Cultural barriers to change include unclear responsibilities (enter Team Topologies), insufficient feedback loops, fear of change and a low prioritisation for fast flow, and most importantly, a lack of psychological safety.

Psychological safety and risk

A lot of these findings, unsurprisingly, echo the findings from Google’s 2013 Project Aristotle, which showed that psychological safety, clarity, dependability, meaning and impact were crucial for high performance in teams.

Extra note on “Legacy” workloads.

The report highlighted the “dragging” effect that legacy workloads can have on flow and change rate, as an effect of their architecture, codebase, or infrastructure, or the fact that nobody in the organisation understands it any longer. Rather than leave alone your legacy workloads, invest in them “so that they’re no longer an inhibitor of progress”. This could be as simple as virtualisation of physical hardware, or decomposing part of the system and moving certain components to cloud-native platforms such as Kubernetes or OpenShift. Even if you have to do something a bit “ugly” such as creating 18GB containers, it’s still a step forward.

TL;DR

  1. Organisational dynamics must be considered crucial to transformation.
  2. Cloud-native approaches are critical. It is no good to simply move traditional workloads to the cloud.
  3. Shift security, compliance and change governance left, and include security stakeholders in all stages of value delivery.
  4. Culture change is key, and must be promoted from the very “top” as well as delivered from the “bottom”. Psychological safety is at the core of digital and cultural transformations.

If you’re interested in finding out more about DevOps and Digital Transformations, Psychological Safety, or Cloud Native approaches, please get in touch.

Thanks to Nigel Kersten, Kate McCarthy, Michael Stahnke and Caitlyn O’Connell for working on the 2021 State of DevOps Report and providing us with these insights.

View the 2021 Accelerate State of DevOps Report summary here.

Resilience Engineering, DevOps, and Psychological Safety – resources

With thanks to Liam Gulliver and the folks at DevOps Notts, I gave a talk recently on Resilience Engineering, DevOps, and Psychological Safety.

It’s pretty content-rich, and here are all the resources I referenced in the talk, along with the talk itself, and the slide deck. Please get in touch if you would like to discuss anything mentioned, or you have a meetup or conference that you’d like me to contribute to!

Here’s a psychological safety practice playbook for teams and people.

Open Practice Library

https://openpracticelibrary.com/

Resilience Engineering and DevOps slide deck  

https://docs.google.com/presentation/d/1VrGl8WkmLn_gZzHGKowQRonT_V2nqTsAZbVbBP_5bmU/edit?usp=sharing

Resilience engineering – Where do I start?

Resilience engineering: Where do I start?

Turn the ship around by David Marquet

Lorin Hochstein and Resilience Engineering fundamentals 

https://github.com/lorin/resilience-engineering/blob/master/intro.md

 

Scott Sagan, The Limits of Safety:
“The Limits of Safety: Organizations, Accidents, and Nuclear Weapons”, Scott D. Sagan, Princeton University Press, 1993.

 

Sidney Dekker: “The Field Guide To Understanding Human Error: Sidney Dekker, 2014

 

John Allspaw: “Resilience Engineering: The What and How”, DevOpsDays 2019.

https://devopsdays.org/events/2019-washington-dc/program/john-allspaw/

 

Erik Hollnagel: Resilience Engineering 

https://erikhollnagel.com/ideas/resilience-engineering.html

 

Cynefin

Home

 

Jabe Bloom, The Three Economies

The Three Economies an Introduction

 

Resilience vs Efficiency

Efficiency vs. Resiliency: Who Won The Bout?

 

Tarcisio Abreu Saurin – Resilience requires Slack

Slack: a key enabler of resilient performance

 

Resilience engineering and DevOps – a deeper dive

Resilience Engineering and DevOps – A Deeper Dive

 

Symposium with John Willis, Gene Kim, Dr Sidney Dekker, Dr Steven Pear, and Dr Richard Cook: Safety Culture, Lean, and DevOps

 

Approaches for resilience and antifragility in collaborative business ecosystems: Javaneh Ramezani Luis, M. Camarinha-Matos:

https://www.sciencedirect.com/science/article/pii/S0040162519304494

 

Learning organisations:
Garvin, D.A., Edmondson, A.C. and Gino, F., 2008. Is yours a learning organization?. Harvard business review, 86(3), p.109.
https://teamtopologies.com/book
https://www.psychsafety.co.uk/cognitive-load-and-psychological-safety/

 

Psychological safety: Edmondson, A., 1999. Psychological safety and learning behavior in work teams. Administrative science quarterly, 44(2), pp.350-383.

The four stages of psychological safety, Timothy R. Clarke (2020)

Measuring psychological safety:

 

And of course the youtube video of the talk:

Please get in touch if you’d like to find out more.

Resilience Engineering and DevOps – A Deeper Dive

robustness vs resilience

[This is a work in progress. If you spot an error, or would like to contribute, please get in touch]

The term “Resilience Engineering” is appearing more frequently in the DevOps domain, field of physical safety, and other industries, but there exists some argument about what it really means. That disagreement doesn’t seem to occur in those domains where Resilience Engineering has been more prevalent and applied for some time now, such as healthcare and aviation. Resilience Engineering is an academic field of study and practice in its own right. There is even a Resilience Engineering Association.

Resilience Engineering is a multidisciplinary field associated with safety science, complexity, human factors and associated domains that focuses on understanding how complex adaptive systems cope with, and learn from, surprise.

It addresses human factors, ergonomics, complexity, non-linearity, inter-dependencies, emergence, formal and informal social structures, threats and opportunities. A common refrain in the field of resilience engineering is “there is no root cause“, and blaming incidents on “human error” is also known to be counterproductive, as Sidney Dekker explains so eloquently in “The Field Guide To Understanding Human Error”.

Resilience engineering is “The intrinsic ability of a system to adjust its functioning prior to, during, or following changes and disturbances, so that it can sustain required operations under both expected and unexpected conditions.Prof Erik Hollnagel

It is the “sustained adaptive capacity” of a system, organisation, or community.

Resilience engineering has the word “engineering” in, which makes us typically think of machines, structures, or code, and this is maybe a little misleading. Instead, maybe try to think about engineering being the process of response, creation and change.

Systems

Resilience Engineering also refers to “systems”, which might also lead you down a certain mental path of mechanical or digital systems. Widen your concept of systems from software and machines, to organisations, societies, ecosystems, even solar systems. They’re all systems in the broader sense.

Resilience engineering refers in particular to complex systems, and typically, complex systems involve people. Human beings like you and I (I don’t wish to be presumptive but I’m assuming that you’re a human reading this).

Consider Dave Snowden’s Cynefin framework:

cynefin

Systems in an Obvious state are fairly easy to deal with. There are no unknowns – they’re fixed and repeatable in nature, and the same process achieves the same result each time, so that we humans can use things like Standard Operating Procedures to work with them.

Systems in a Complicated state are large, usually too large for us humans to hold in our heads in their entirety, but are finite and have fixed rules. They possess known unknowns – by which we mean that you can find the answer if you know where to look. A modern motorcar, or a game of chess, are complicated – but possess fixed rules that do not change. With expertise and good practice, such as employed by surgeons or engineers or chess players, we can work with systems in complicated states.

Systems in a Complex state possess unknown-unknowns, and include realms such as battlefields, ecosystems, organisations and teams, or humans themselves. The practice in complex systems is probe, sense, and respond. Complexity resists reductionist attempts at determining cause and effect because the rules are not fixed, therefore the effects of changes can themselves change over time, and even the attempt of measuring or sensing in a complex system can affect the system. When working with complex states, feedback loops that facilitate continuous learning about the changing system are crucial.

Systems in a Chaotic state are impossible to predict. Examples include emergency departments or crisis situations. There are no real rules to speak of, even ones that change. In these cases, acting first is necessary. Communication is rapid, and top-down or broadcast, because there is no time, or indeed any use, for debate.

Resilience

As Erik Hollnagel has said repeatedly since Resilience Engineering began (Hollnagel & Woods, 2006), resilience is about what a system can do — including its capacity: 

  • to anticipate — seeing developing signs of trouble ahead to begin to adapt early and reduce the risk of decompensation 
  • to synchronize —  adjusting how different roles at different levels coordinate their activities to keep pace with tempo of events and reduce the risk of working at cross purposes 
  • to be ready to respond — developing deployable and mobilizable response capabilities in advance of surprises and reduce the risk of brittleness 
  • for proactive learning — learning about brittleness and sources of resilient performance before major collapses or accidents occur by studying how surprises are caught and resolved 

(From Resilience is a Verb by David D. Woods)

 

Capacity Description
Anticipation Create foresight about future operating conditions, revise models of risk
Readiness to respond Maintain deployable reserve resources available to keep pace with demand
Synchronization Coordinate information flows and actions across the networked system
Proactive learning Search for brittleness, gaps in understanding, trade-offs, re-prioritisations

Provan et al (2020) build upon Hollnagel’s four aspects of resilience to show that resilient people and organisations must possess a “Readiness to respond”, and states “This requires employees to have the psychological safety to apply their judgement without fear of repercussion.”

Resilience is therefore something that a system “does”, not “has”.

Systems comprise of structures, technology, rules, inputs and outputs, and most importantly, people.

Resilience is about the creation and sustaining of various conditions that enable systems to adapt to unforeseen events. *People* are the adaptable element of those systems” – John Allspaw (@allspaw) of Adaptive Capacity Labs.

Resilience therefore is about “systems” adapting to unforeseen events, and the adaptability of people is fundamental to resilience engineering.

And if resilience is the potential to anticipate, respond, learn, and change, and people are part of the systems we’re talking about:

We need to talk about people: What makes people resilient?

Psychological safety

Psychological safety is the key fundamental aspect of groups of people (whether that group is a team, organisation, community, or nation) that facilitates performance. It is the belief, within a group, “that one will not be punished or humiliated for speaking up with ideas, questions, concerns, or mistakes.” – Edmondson, 1999.

Amy Edmondson also talks about the concept of a “Learning organisation” – essentially a complex system operating in a vastly more complex, even chaotic wider environment. In a learning organisation, employees continually create, acquire, and transfer knowledge—helping their company adapt to the un-predictable faster than rivals can. (Garvin et al, 2008)

“A resilient organisation adapts effectively to surprise.” (Lorin Hochstein, Netflix)

In this sense, we can see that a “learning organisation” and a “resilient organisation” are fundamentally the same.

Learning, resilient organisations must possess psychological safety in order to respond to changes and threats. They must also have clear goals, vision, and processes and structures. According to Conways Law:

“Any organisation that designs a system (defined broadly) will produce a design whose structure is a copy of the organisation’s communication structure.”

In order for both the organisation to respond quickly to change, and for the systems that organisation has built to respond to change, the organisation must be structured in such a way that response to change is as rapid as possible. In context, this will depend significantly on the organisation itself, but fundamentally, smaller, less-tightly coupled, autonomous and expert teams will be able to respond to change faster than large, tightly-bound teams with low autonomy will. Pais and Skelton’s Team Topologies explores this in much more depth.

Engineer the conditions for resilience engineering

“Before you can engineer resilience, you must engineer the conditions in which it is possible to engineer resilience.” – Rein Henrichs (@reinH)

As we’ve seen, an essential component of learning organisations is psychological safety. Psychological safety is a necessary condition (though not sufficient) for the  conditions of resilience to be created and sustained. 

Therefore we must create psychological safety in our teams, our organisations, our human “systems”. Without this, we cannot engineer resilience. 

We create, build, and maintain psychological safety via three core behaviours:

  1. Framing work as a learning problem, not an execution problem. The primary outcome should be knowing how to do it even better next time.
  2. Acknowledging your own fallibility. You might be an expert, but you don’t know everything, and you get things wrong – if you admit it when you do, you allow others to do the same.
  3. Model curiosity – ask a lot of questions. This creates a need for voice. By you asking questions, people HAVE to speak up. 

Resilience engineering and psychological safety

Psychological safety enables these fundamental aspects of resilience – the sustained adaptive capacity of a team or organisation.:

  • Taking risks and making changes that you don’t, or can’t, fully understand the outcomes of. 
  • Admitting when you made a mistake. 
  • Asking for help
  • Contributing new ideas
  • Detailed systemic cause* analysis (The ability to get detailed information about the “messy details” of work)

(*There is never a single root cause)

Let’s go back to that phrase at the start:

Sustained adaptive capacity.

What we’re trying to create is an organisation, a complex system, and sub systems (maybe including all that software we’re building) that possesses a capacity for sustained adaptation.

With DevOps we build systems that respond to demand, scale up and down, we implement redundancy, low-dependancy to allow for graceful failure, and identify and react to security threats.

Pretty much all of these only contribute to robustness.

robustness vs resilience

(David Woods, Professor, Integrated Systems Engineering Faculty, Ohio State University)

You may want to think back to the cynefin model, and think of robustness as being able to deal well with known unknowns (complicated systems), and resilience as being able to deal well with unknown unknowns (complex, even chaotic systems). Technological or DevOps practices that primarily focus on systems, such as microservices, containerisation, autoscaling, or distribution of components, build robustness, not resilience.

However, if we are to build resilience, the sustained adaptive capacity for change, we can utilise DevOps practices for our benefit. None of them, like psychological safety, are sufficient on their own, but they are necessary. Using automation to reduce the cognitive load of people is important: by reducing the extraneous cognitive load, we maximise the germane, problem solving capability of people. The provision of other tools, internal platforms, automated testing pipelines, and increasing the observability of systems increases the ability of people and teams to respond to change, and increases their sustained adaptive capacity.

If brittleness is the opposite of resilience, what does “good” resilience look like? The word “anti-fragility” appears to crop up fairly often, due to the book “Antifragile: Things that Gain from Disorder” by Nassim Taleb. What Taleb describes as antifragile, ultimately, is resilience itself.

I have my own views on this, but fundamentally I think this is the danger of academia (as in the field of resilience engineering) restricting access to knowledge. A lot of resilience engineering literature is held behind academic paywalls and journals, which most practitioners do not have access to.  It should be of no huge surprise that people may reject a body of knowledge if they have no access to it.

Observability

It is absolutely crucial to be able to observe what is happening inside the systems. This refers to anything from analysing system logs to identify errors or future problems, to managing Work In Progress (WIP) to highlight bottlenecks in a process.

Too often, engineering and technology organisations look only inward, whilst many of the threats to systems are external to the system and the organisation. Observability must also concern external metrics and qualitative data: what is happening in the marketspace, the economy, and what are our competitors doing?

Resilience Engineering and DevOps

What must we do?

Create psychological safety – this means that people can ask for help, raise issues, highlight potential risks and “apply their judgement without fear of repercussion.” There’s a great piece here on psychological safety and resilience engineering.

Manage cognitive load – so people can focus on the real problems of value – such as responding to unanticipated events.

Apply DevOps practices to technology – use automation, internal platforms and observability, amongst other DevOps practices. 

Increase observability and monitoring – this applies to systems (internal) and the world (external). People and systems cannot respond to a threat if they don’t see it coming.

Embed practices and expertise in component causal analysis – whether you call it a post-mortem, retrospective or debrief, build the habits and expertise to routinely examine the systemic component causes of failure. Try using Rothmans Causal Pies in your next incident review.

Run “fire drills” and disaster exercises. Make it easier for humans to deal with emergencies and unexpected events by making it habit. Increase the cognitive load available for problem solving in emergencies.

Structure the organisation in a way that facilitates adaptation and change. Consider appropriate team topologies to facilitate adaptability.

In summary

Through facilitating learning, responding, monitoring, and anticipating threats, we can create resilient organisations. DevOps and psychological safety are two important components of resilience engineering, and resilience engineering (in my opinion) is soon going to be seen as a core aspect of organisational (and digital) transformation.

 

References:

Conway, M. E. (1968) How Do Committees Invent? Datamation magazine. F. D. Thompson Publications, Inc. Available at: https://www.melconway.com/Home/Committees_Paper.html

Dekker, S. 2006. The Field Guide to Understanding Human Error. Ashgate Publishing Company, USA.

Edmondson, A., 1999. Psychological safety and learning behavior in work teams. Administrative science quarterly, 44(2), pp.350-383.

Garvin, David & Edmondson, Amy & Gino, Francesca. (2008). Is Yours a Learning Organization?. Harvard business review. 86. 109-16, 134.

Hochstein, L. (2019)  Resilience engineering: Where do I start? Available at: https://github.com/lorin/resilience-engineering/blob/master/intro.md (Accessed: 17 November 2020).

Hollnagel, E., Woods, D. D. & Leveson, N. C. (2006). Resilience engineering: Concepts and precepts. Aldershot, UK: Ashgate.

Hollnagel, E. Resilience Engineering (2020). Available at: https://erikhollnagel.com/ideas/resilience-engineering.html (Accessed: 17 November 2020).

Provan, D.J., Woods, D.D., Dekker, S.W. and Rae, A.J., 2020. Safety II professionals: how resilience engineering can transform safety practice. Reliability Engineering & System Safety, 195, p.106740. Available at https://www.sciencedirect.com/science/article/pii/S0951832018309864

Woods, D. D. (2018). Resilience is a verb. In Trump, B. D., Florin, M.-V., & Linkov, I.
(Eds.). IRGC resource guide on resilience (vol. 2): Domains of resilience for complex interconnected systems. Lausanne, CH: EPFL International Risk Governance Center. Available on irgc.epfl.ch and irgc.org.

John Allspaw has collated an excellent book list for essential reading on resilience engineering here.

Remote Working – What Have We Learned From 2020?

Remote working improves productivity.

Even way back in 2014, evidence showed that remote working enables employees to be more productive and take fewer sick days, and saves money for the organisation.  The rabbit is out of the hat: remote working works, and it has obvious benefits.

Source: Forbes Global Workplace Analytics 2020

More and more organisations are adopting remote-first or fully remote practices, such as Zapier:

“It’s a better way to work. It allows us to hire smart people no matter where in the world, and it gives those people hours back in their day to spend with friends and family. We save money on office space and all the hassles that comes with that. A lot of people are more productive in remote setting, though it does require some more discipline too.”

We know, through empirical studies and longitudinal evidence such as Google’s Project Aristotle that colocation of teams is not a factor in driving performance. Remote teams perform as well as, if not better than colocated teams, if provided with appropriate tools and leadership.

Teams that are already used to more flexible, lightweight or agile approaches adapt adapt to a high performing and fully remote model even more easily than traditional teams.

The opportunity to work remotely, more flexibly, and save on time spent commuting helps to improve the lives of people with caring, parenting or other commitments too. Whilst some parents are undoubtedly keen to get into the office and away from the distractions of home schooling, the ability to choose remote and more flexible work patterns is a game changer for some, and many are actually considering refusing to go back to the old ways.

What works for some, doesn’t work for others, and it will change for all of us over time, as our circumstances change. But having that choice is critical.

However, remote working is still (even now in 2020 with the effects of Covid and lockdowns) something that is “allowed” by an organisation and provided to the people that work there as a benefit.

Remote working is now an expectation.

What we are seeing now is that, for employees at least, particularly in technology, design, and other knowledge-economy roles, remote working is no longer a treat, or benefit – just like holiday pay and lunch breaks,  it’s an expectation.

Organisations that adopt and encourage remote working are able to recruit across a wider catchment area, unimpeded by geography, though still somewhat limited by timezones – because we also know that synchronous communication is important.

Remote work is also good for the economy, and for equality across geographies. Remote work is closing the wage gap between areas of the US and will likely have the same effect on the North-South divide in the UK. This means London firms can recruit top talent outside the South-East, and people in typically less affluent areas can find well paying work without moving away.

But that view isn’t shared by many organisations.

However, whilst employees are increasingly seeing remote working as an expectation rather than a benefit, many organisations, via pressure from command-control managers, difficulties in onboarding, process-oriented HR teams, or simply the most dangerous phrase in the English language: because “we’ve always done it this way“, possess a desire to bring employees back into the office, where they can see them.

Indeed, often by the managers of that organisation, remote working may be seen as an exclusive benefit and an opportunity to slack off. The Taylorist approach to management is still going strong, it appears.

People are adopting remote faster than organisations.

In 1962, Everett Rogers came up with the principle he called “Diffusion of innovation“.

It describes the adoption of new ideas and products over time as a bell curve, and categorises groups of people along its length as innovators, early adopters, early majority, late majority, and laggards. Spawned in the days of rapidly advancing agricultural technology, it was easy (and interesting) to study the adoption of new technologies such as hybrid seeds, equipment and methods.

Some organisations are even suggesting that remote workers could be paid less, since they no longer pay for their commute (in terms of costs and in time), but I believe the converse may become true – that firms who request regular attendance at the office will need to pay more to make up for it. As an employee, how much do you value your free time?

It seems that many people are further along Rogers’ adoption curve than the organisations they work for.

There are benefits of being in the office.

Of course, it’s important to recognise that there are benefits of being colocated in an office environment. Some types of work simply don’t suit it. Some people don’t have a suitable home environment to work from. Sometimes people need to work on a physical product or collaborate and use tools and equipment in person. Much of the time, people just want to be in the same room as their colleagues – what Tom Cheesewright calls “The unbeatable bandwidth of being there.”

But is that benefit worth the cost? An average commute is 59 minutes, which totals nearly 40 hours per month, per employee. For a team of twenty people, is 800 hours per month worth the benefit of being colocated? What would you pay to obtain an extra 800 hours of time for your team in a single month?

The question is one of motivation: are we empowering our team members to choose where they want to work and how they best provide value, or are we to revert to the Taylorist principles where “the manager knows best”? In Taylors words: “All we want of them is to obey the orders we give them, do what we say, and do it quick.

We must use this as a learning opportunity.

Whilst 2020 has been a massive challenge for all of us, it’s also taught us a great deal, about change, about people and about the future of work. The worst thing that companies can do is ignore what they have learned about their workforce and how they like to operate. We must not mindlessly drift back to the old ways.

We know that remote working is more productive, but there are many shades of remoteness, and it takes strong leadership, management effort, good tools, and effective, high-cadence communication to really do it well.

There is no need for a binary choice: there is no one-size-fits-all for office-based or remote work. There are infinite operating models available to us, and the best we can do to prepare for the future of work is simply to be endlessly adaptable.